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ABSTRACT 

An infinite family of simple (i.e. 4-valent) 4-dimensional convex polytopes is 
constructed with the property that no 5-dimensional convex polytope has each 
of its 4-dimensional faces combinatorially equivalent to just one member of 
this family. 

1. Introduction. A convex d-polytope P is a d-nonfacet provided there is no 

(d + 1)-polytope all of whose facets are combinatorially equivalent to P. Perles 

and Shephard were the first to discover the existence of  nonfacets of  dimensions 

greater than two [3]. They constructed many nonfacets of all dimensions but they 

were not able to find any simple (d-valent) d-nonfacets of dimensions greater 

than 3. In this paper we show the existence of  an infinite number of simple 4- 

nonfacets. 

2. Defiin|tions. I f  P is a d-polytope then by a k-manifold M in P we will 

mean a strongly connected k-dimensional subcomplex of the boundary complex, 

/~(P), of P such that each (k - 1)-cell in M meets exactly two k-cells of M. By an 

s-manifold in P we will mean a (d - 2)-manifold in P which is (topologically) a 

(d - 2)-sphere. A Hamiltonian manifoldis an s-manifold which contains all vertices 

of  P. 

Our construction is accomplished by means of a Joinin9 process which we now 

define. Let P and Q be two simple d-polytopes and let x and y be vertices of  P 

and Q respectively. The two polytopes are joined by performing the following 

steps: 

(i) Truncate vertices x and y producing polytopes P1 and QI with simplicial 

facets FI and F2, respectively, which were created by the truncation. 

(ii) Take a hyperplane, H passing through x and apply a projective trans- 
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formation z1 which sends H to infinity. In zl(Pz) all facets meeting Zl(F1) will be 

parallel. Apply the same kind of transformation z2 to Qt- 

(iii) Apply an affine transformation ~1 to zl(P~) which will produce a polytope 

Pz = ~:[q(P1)] in which one facet meeting ~l[zl(F1)] is perpendicular to cq [q(F1) ]. 

Note that all facets meeting ~1 [q(F)] will be perpendicular to it. Apply the same 

kind of affine transformation, ct 2 to z2(Q1) to prodcue Q2 = ~2[z2(Q1)]. 

(iv) Apply an affine transformation ~3 to P2 which will take ~x[q(F1) ] onto 

~2[~2(F2)] and leaves the faces meeting ~[q(F1)] perpendicular to it. 

(v) Place Q2 and %(P2) so that ~3[~1(z1(/:1))] and ~2[z2(F2) ] coincide and so 

that the interior of Qz misses the interior of ~3(P2). 

This joining process produces a simple polytope which we shall denote byP  + Q. 

Since we are concerned only with the combinatorial structure of polytopes we 

shall, from now on, not distinguish between the various images of our polytopes 

under affine and projective transformations. 

3. Manifolds in polytopes. In order to obtain our result we shall use the 

following theorem by Perles and Shephard [3]: 

I f  a d-polytope P is a facet (i.e. not a nonfacet) then 

f j (P )  < m j ( P ) ( d  + 1 - j ) / ( d  - 1 - j ) .  

Here, f~(P) is the number off-faces of P and m~(P) is the maximum number of 

j-faces that occur among all regular projections of all d-polytopes combinatorially 

equivalent to P. A regular projection of P is defined as follows. Let x be a vector 

which is not parallel to any face of P then the (d - 1)-polytope obtained by an 

orthogonal projection of P onto a hyperplane normal to x is called a regular 

projection of P. 

In a regular projection Q of any 4-polytope P the 2-faces of Q are images of 

2-faces in P and thus the boundary complex of Q is the image of an s-manifold 

in P. We shall use (1) for the casej  = 1 in which case 

4 
(2) f l  (P) < -~- ms(P). 

In view of(2) and the above remarks it is sufficient to construct an infinite number 

of simple 4-polytopes in which each s-manifold uses at most one half of the vertices 

of the polytope. 
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LEMMA 1. I f  M is a (d - 2)-manifold which is a subcomplex o f  the boundary 

complex of  a d-simplex, d > 3 then M is a topological sphere. 

Proof. We shall prove the lemma by induction on the dimension, d, of the 

simplex. The result is obvious for d = 3. Suppose M is a manifold in a d-simplex 

S, d > 3, and that the lemma is true for all dimensions 3 > d' > d. 

Let B be the union of all facets of S lying inside M. Since at most d facets lie 

inside M, they intersect on some k-face, F, 0 > k > d. We shall show that in 

constructing B by adding one facet at a time to F w e  will create a new (d - 1)-celI 

at each step. This is clearly true when we add the first facet. Suppose we add the ith 

facet ~r, i > 1. The intersection of ~" with the previously constructed cell consists 

of a collection of (d - 2)-faces of ~-. Since F is also a simplex these (d - 2)-faces 

intersect on some face of 5 .  By induction the boundary fl(C) of the union, C of 

this collection of ( d -  2)-facets is a ( d -  3)-sphere and C is a (d-2)-cell. By 

adding the facet ~ to the previously constructed cell we have altered the boundary 

fl(C) by replacing a (d - 2)-cell in fl(C) by the complement of C in the boundary 

of ~-, which is also a (d - 2)-cell, thus by adding ~" we have created a new 

(d - 1)-cell. Thus the union of all facets of S which lie inside M is a cell and M is a 

sphere. 

LEMMA 2. Let P and Q be simple d-polytopes, d > 4 and M be an s-manifoM in 

P + Q. l f M  contains vertices of  both P1 and QI, then there is an s-manifold M~ in 

Q such that: 

(i) M 1 contains each vertex common to Q1 and M. 

(ii) M 1 contains the vertex y of  Q which was truncated in the joinin# process. 

Proof. Let Hbe  the hyperplane determined by the facet F2. By our construction, 

each facet o f P  + Q which meets F2 is perpendicular to H, thus each (d - 2)-face 

of M which intersects H, intersects F in a (d - 3)-face of F2. 

Each (d - 3)-face of M is the intersection of exactly two (d - 2)-faces of M, 

thus in M n H each (d - 4)-face is the interesection of exactly two (d - 3)- 

faces. This shows that the connected components of M n H are manifolds in _F 1. 

If  there were two components of M n H then they would separate at least two 

facets of F2, but since F2 is a simplex, each pair of facets meet and thus M n H 

has only one component. By Lemma 1 this component is a sphere. Let C be one 

of the regions into which/~(F2) is divided by M n H. The sets C and M N Q1 are 

(d - 2)-cells which have a common boundary and thus they form an s-manifold 



Vol. 7, 1969 A SIMPLE 4-DIMENSIONAL NONFACET 19 

M'  in QI. Let S be the d-simplex containing y which was created by the truncation. 

We shall place S on Q1 (after applying the suitable transformations) to produce Q. 

Let C* be the (d - 2)-cell composed o f (d  - 2)-faces o r s  which coincide with the 

(d - 2)-faces of C. Let B be the union of the sets of the form con ([v] t3 F) where F 

is a (d - 2)-face of C*. The set B is a (d - 1)-cell and its boundary, fl(B) is a 

(d - 2)-sphere. If  we now take the union of M'  ,,, C and the complement of C* 

in fl(B) we will have our desired s-manifold. 

LEMMA 3. The 120-cell contains no Hamiltonian manifold. 

Proof.  The 120-cell is a simple 4-polytope with 120 regular dodecahedral 

facets and 600 vertices [1]: Suppose M were a Hamiltonian manifold in the 120- 

cell. Each 2-face of M would be a pentagon, thus E = 5E/2 where E is the number 

of edges of M and F is the number of 2-faces. Euler's formula for M states that 

V - E + / v  = 2, where V is the number of vertices of  M. This implies that 

600 - 3E/5 = 2, which admits no integer solution for E. 

THEOREM 1. There exists a sequence Po, PI, ... of simple 4-polytopes for 

which Pk < n~ -# , where Pk is the maximum number of vertices in any s-manifold 

in P~, n k is the number of vertices Of Pk and fl is a positive constant. 

Proof.  The 3-dimensional analogue of  this theorem has been proved by 

Griinbaum and Motzkin [2] and our proof is almost identical to theirs. We define 

PI to be the 120-cell and we shall define Pl inductively. If  ni_ l is the number of 

vertices of Pi-  x then we form Pi by joining n~_ 1 copies of P~_ 1 to a copy of  P~_ 

(one copy to each vertex). This gives us a new polytope Pt with n~_ :(n i_ ~ - 1) 

vertices. If  p~ is the maximum number of  vertices in any manifold in P~ then 

P~ < Pi- l(Pi- 1 - 1). We now choose fl > 0 such that 

po < no ~ 
no 

and proceeding by induction we show that 

P k + l  
- -  < nk-+#l . 
n t + l  

This will follow because: 

e~ < n~ and we have Pk - 1 Pk 
n ~ -  1 n k 
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P i + l  <Pk(Pk -- 1) pk 2 < - -  < n ~  2p . 
nk+ 1 nk(nk -- 1) nk 

since nk+~ = ni(nk -- 1) < n 2, we have 

nk 2a < nk+Pt and the result follows. 

Using the above theorem we may find an infinite collection of  simple 4-polytopes 

for which Pk < nk/2 and using the Perles-Shephard Theorem we have an infinite 

collection of simple 4-dimensional nonfacets. 

4. Remarks, 

(1) One can prove that if P is the dual of a cyclic 4-polytope and has more than 

8 facets then it has no s-manifold, thus one could use any of  these polytopes 

instead of  the 120-cell. The author conjectures that similar results hold for the 

duals of even-dimensional cyclic polytopes of higher dimensions. 

(2) The author is indebted to the referee for his suggested proof  of  the inequality 

in Theorem 1. 
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